分类

2025年05月28日成考高起点每日一练《数学(文史)》

成考高起点 2025-05-28作者:匿名 来源:本站整理

2025年成考高起点每日一练《数学(文史)》5月28日专为备考2025年数学(文史)考生准备,帮助考生通过每日坚持练习,逐步提升考试成绩。

单选题

1、一批产品共有5件,其中4件为正品,1件为次品,从中一次取出2件均为正品的概率为()。

答 案:A

解 析:本题主要考查的知识点为随机事件的概率。 一次取出2件均为正品的概率为

2、设成等比数列,则x等于  

答 案:C

解 析:由已知条件的得

3、函数f(x)=sinx+x3()。

答 案:B

4、不等式x2+x+>0的解集是()。

答 案:A

主观题

1、已知tan2θ=2tan2ψ+1,求cos2θ+sin2ψ的值。  

答 案:由已知,得

2、每亩地种果树20棵时,每棵果树收入90元,如果每亩增种一棵,每棵果树收入就下降3元,求使总收入最大的种植棵数.  

答 案:设每亩增种x棵,总收入味y元,则每亩种树(20+x)棵,由题意知增种x棵后每棵收入为(60-3x) 则有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 当x=5时,y有最大值,所以每亩地最多种25棵

3、已知直线l的斜率为1,l过抛物线C:的焦点,且与C交于A,B两点.
(I)求l与C的准线的交点坐标;
(II)求|AB|.

答 案:(I)C的焦点为,准线为由题意得l的方程为因此l与C的准线的交点坐标为(II)由设A(x1,y1).B(x2,y2),则因此

4、求函数(x∈R)的最大值与最小值。  

答 案:设sinx+cosx=t,则(sinx+cosx)2=t2,1+2sinxcosx=t2,sinxcosx= 于是转化为求的最值。 由所设知 上为增函数,故g(t)的最大值为最小值为

填空题

1、  

答 案:

解 析: 【考点指要】本题主要考查三角函数的最大值、最小值及值域的求法,解题时需要灵活运用诱导公式、二倍角公式以及辅助角公式,当函数可以化

2、过点(2,0)作圆x2+y2=1的切线,切点的横坐标为()。

答 案:

解 析:本题主要考查的知识点为圆的切线. 设切点(x0,y0)则有所以故切点横坐标为  

相关文章

网友评论
我要跟贴
    取消